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Abstract—We introduce new compression side-channel
attacks against database storage engines that simultaneously
support compression of database pages and encryption at
rest. Given only limited, indirect access to an encrypted and
compressed database table, our attacks extract arbitrary
plaintext with high accuracy. We demonstrate accurate and
performant attacks on the InnoDB storage engine variants
found in MariaDB and MySQL as well as the WiredTiger
storage engine for MongoDB.

Our attacks overcome obstacles unique to the database
setting that render previous techniques developed to attack
TLS ineffective. Unlike the web setting, where the exact
length of a compressed and encrypted message can be
observed, we make use of only approximate ciphertext size
information gleaned from file sizes on disk. We amplify
this noisy signal and combine it with new attack heuristics
tailored to the database setting to extract secret plaintext.
Our attacks can detect whether a random string appears
in a table with > 90% accuracy and extract 10-character
random strings from encrypted tables with > 95% success.

I. INTRODUCTION

Compression side-channel attacks take advantage of
the combination of compression and encryption to learn
information about encrypted messages [16, 27]. Encryp-
tion methods used in practice aim to hide the content of
a message, but do not aim to fully hide its length. Since
compression post-encryption is ineffective, all systems
that combine compression and encryption first compress
the plaintext and then encrypt. This leaks information
about encrypted plaintexts through the length of the
resulting ciphertext [18, 22].

An attacker who can append their own input to data that
is about to be compressed and encrypted can essentially
insert “guesses” about the secret plaintext and determine
whether those guesses are correct by observing the
resulting ciphertext size. A correct guess is likely to
compress well with the private data and result in a
smaller ciphertext, while an incorrect guess is likely to
compress poorly and result in a larger ciphertext. This
intuition forms the backbone of the celebrated CRIME

and BREACH attacks [16, 27], which enabled stealing
cookies or CSRF tokens from encrypted HTTPS ses-
sions. While the potential for compression side-channel
attacks is understood to exist whenever systems combine
compression and encryption, few works explore potential
attacks beyond the TLS setting. Section VIII contains a
brief summary of these works.

This paper introduces new compression side-channel
attacks against databases. Modern databases provide rich
support for data compression as well as encryption of data
at rest. We demonstrate a number of settings where an
attacker with limited, indirect access to an encrypted
and compressed database table can extract arbitrary
plaintext with high accuracy. Moreover, we show an even
more rapid and extremely accurate attack that enables
detection of specific adversary-chosen strings, e.g., email
addresses, names, or keywords, in an encrypted table.
We call our new attacks DBREACH attacks, standing for
Database Reconnaissance and Exfiltration via Adaptive
Compression Heuristics.

Our attacks require only that an adversary has the
ability to insert and update rows in a victim table, either
directly or through, e.g., a web interface, and that the
attacker can learn the size of encrypted tables. We discuss
various settings where an adversary has such capabilities
when we elaborate our threat model in Section III.

We instantiate our attacks against MariaDB [2] and
MongoDB [3], configured to use the default InnoDB [1]
and WiredTiger [24] storage engines, respectively. We
also demonstrate the feasibility of our attacks against the
InnoDB variant in MySQL [5], using a slightly stronger
threat model.

The storage engine is the component of the database
system that handles the actual reading, writing, and
updating of tables. Our attacks apply to all three com-
pression schemes supported by MariaDB’s standard
InnoDB installation, two of which are also supported



by MongoDB.
Extending the generic notion of compression side

channels to a concrete attack on databases requires
solving new challenges not present in other settings.
Since database pages are ultimately stored in a filesystem,
access to file sizes provides only a low-resolution signal
regarding the actual size of the underlying table. The
database’s choices of how to lay out table data on disk
pose an additional challenge. These obstacles render any
naı̈ve use of the techniques of CRIME, BREACH, or
related attacks ineffective.

We introduce new attack techniques that correctly align
an attacker’s “guess” with the page boundaries of both
the database storage engine and the underlying filesystem,
significantly boosting the noisy signal provided by file
size information. We also design a series of new heuristic
approaches to using guess compressibility for plaintext
extraction. We implement attackers that retrieve file size
information from the filesystem and insert guesses using
either direct, unprivileged access to the DBMS or via a
web front-end.

Our attacks can detect whether a random string appears
in a table with at least 85% accuracy for any of
the compression algorithms analyzed, even achieving
accuracy of over 99% under certain conditions. Even for
structured string data where the compression side channel
is noisier due to incidental compression, e.g., English
text or email addresses, we can detect the presence of a
string with 70% or higher accuracy. Moreover, for the
default zlib compression algorithm in MariaDB, we can
extract 10-character random strings with greater than
95% success, and 17-character strings with 92% success.

Our proof of concept code is available at https://github.
com/mathewdhogan/dbreach-code.

Disclosure. We discussed DBREACH and potential miti-
gations with the security teams of MariaDB, MongoDB,
and MySQL. Since the attack is against the general
encryption and compression protocol rather than an
implementation bug, a patch was not deemed necessary
or feasible.

II. BACKGROUND

This section introduces the notion of a compression
side channel and gives the background on compression
and databases that we use to develop our attacks in
subsequent sections.

A. The Issue with Compression and Encryption

Modern encryption schemes aim to guarantee Semantic
Security [18]. Informally, semantic security means that

one cannot feasibly extract any information about the
original plaintext from an encrypted message, except
for its length. Applying compression to the plaintext,
prior to encrypting it, breaks the guarantee of semantic
security, as the length of the message now depends on the
compressibility of the plaintext. By observing the length
of an encrypted and compressed message, an adversary
learns additional information about the entropy of the
plaintext, contrary to the definition given above.

This observation, first explored by Kelsey [22], re-
sulted in critical web vulnerabilities in the form of the
CRIME [27] and BREACH [16] attacks. These attacks
suggest that anywhere compression and encryption are
combined, we should consider whether this combination
poses a practical security threat that can be exploited.
In this paper, we will show how to abuse compression
to extract plaintext from encrypted databases. The rest
of this section provides the background on encryption
and compression in the InnoDB and WiredTiger storage
engines that will be needed to explain our attacks.

B. Storage Engines

We instantiate our attacks against two storage engines:
InnoDB [1] and WiredTiger [24].

InnoDB. The InnoDB storage engine [1] is used by
the relational database management software (RDBMS)
MariaDB [2] and MySQL [4], although the two InnoDB
versions have diverged in terms of implementation and
functionality. We attacked InnoDB as used by both
MariaDB and MySQL. That said, differences in MySQL’s
implementation led to a slightly less powerful attack than
that against MariaDB. We discuss the MySQL attack in
more detail in Appendix D; for the rest of this paper, we
will use “InnoDB” to refer to MariaDB’s version of the
storage engine, unless otherwise noted.

WiredTiger. We also demonstrate our attacks against
the WiredTiger storage engine [24] used by the RDBMS
MongoDB [3]. We selected WiredTiger and MongoDB
as an additional target because it differs from InnoDB
in several important ways, including in its fundamental
storage paradigm: WiredTiger and MongoDB are NoSQL
database platforms, unlike InnoDB. The success of our
attacks against such a variety of storage software and
paradigms demonstrates their broad generalizability.

C. Table Storage

InnoDB for MariaDB offers two choices for storing
tables: a single shared tablespace or separate file-per-
table tablespaces. For simplicity, we will only consider
the latter case, which is the default on a standard Ubuntu
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installation of MariaDB. In this setting, the data for each
table in a database resides in a separate file on disk.

Due to its distinct storage paradigm, WiredTiger uses
different database terminology: tables are “collections,”
and the terms “row” and “column” are eschewed in favor
of “document” and “field” respectively. For readability,
we will use the more traditional database terms throughout
this paper, even when referring to WiredTiger. Despite
the differences in terminology, WiredTiger also stores
the data for each table (i.e., collection) in a separate file
on disk.

In both InnoDB and WiredTiger, each table file begins
with some table metadata, followed by the table contents,
with each row preceded by a row header. In WiredTiger,
the value of each column is also preceded by a header
containing the column name. We find that insertions
in both storage engines are generally written to disk
sequentially and that updating the contents of a row
with new contents of similar size often overwrites the
original row in place. There are exceptions to this general
behavior, e.g., in cases of updates that cause a row to
grow or insertions that overwrite space freed by previous
deletions, but the behavior is consistent enough for our
purposes. For brevity, we omit a longer discussion of the
behavior of each storage engine. We do not discuss other
aspects of how tables are stored on disk, e.g., indexes,
as they will not be relevant to our attacks.

Table file growth. As the amount of data in a table
increases, both InnoDB and WiredTiger lazily allocate
space on-demand, e.g., during an insertion, if there is no
space available in the existing table file for the new data.
In both storage backends, the table file grows coarsely,
with the engine allocating new file space in large chunks.
When additional space is allocated, InnoDB adds a
complete InnoDB database page at once, which is 16 KB
by default. The default allocation size for WiredTiger is 4
KB. This means that, while using either storage engine, a
table file’s (uncompressed) size will stay constant through
many insertions, and then increase suddenly by the default
allocation size. Additionally, since deleted data is not
actually removed from a table file, uncompressed table
files never shrink unless a database administrator (DBA)
runs the OPTIMIZE TABLE command (for MariaDB)
or the compact command (for MongoDB). This implies
that a table’s size on disk provides only an imprecise
approximation of the table’s logical size in the database.

Encryption at rest. Both InnoDB and WiredTiger support
the at-rest encryption of table files. Innodb utilizes AES
in CBC or CTR mode; we use CTR as this is the
recommended setting. This is implemented via a two-

tier key hierarchy, where a 128-, 192-, or 256-bit root
key encrypts a number of 128-bit table keys, each of
which encrypts a table’s 16 KB database pages before
writing those pages to disk. WiredTiger uses 256-bit AES
CBC or AES GCM encryption via OpenSSL [6]; we use
the default CBC. WiredTiger leverages a 96- or 192-bit
master key to encrypt its 256-bit database keys, which is
then used for each table in the database. In both storage
engines, encryption is the final operation before a page
is written to the filesystem, and, importantly, it occurs
after any compression has already taken place.

D. Compressing tables

Both InnoDB and WiredTiger provide several compres-
sion options that can be specified at table creation or as
a database-wide config.

InnoDB. InnoDB provides several options for compress-
ing tables, including the COMPRESSED row format and
InnoDB page compression. We developed our attack
against page compression, the recommended compression
method according to MariaDB documentation.

In InnoDB Page Compression, each 16 KB page is
compressed on its own before being written to disk. This
means that any data on a given page will be compressed
with all other data on that page, including deleted or
updated rows that have not yet been fully overwritten.

WiredTiger. By default, WiredTiger enables block com-
pression for all tables. The default compression window
is equal to WiredTiger’s allocation size, so typically 4
KB. Like InnoDB, all data within the 4 KB is compressed
together, including not-yet-overwritten stale data.

Compression algorithms. Both InnoDB and WiredTiger
support several different compression algorithms, with
InnoDB supporting up to six and WiredTiger up to
three. We demonstrate that our attack works against the
following three compression algorithms that come pre-
installed with MariaDB on Ubuntu, all of which are based
on the LZ77 compression algorithm [35]:

• zlib [15]: A commonly used library that uses the
DEFLATE storage format [11], and the most aggres-
sive of the three compression algorithms. DEFLATE
combines LZ77 compression [35] with Huffman
encoding [19]. Huffman encoding introduces noise
into the compression side channel (as previously
observed by [27] and [16]) and makes zlib a more
challenging algorithm to attack.

• LZ4 [34]: An algorithm in the LZ77 [35] family.
Less aggressive than zlib, LZ4 uses only LZ77
compression and no Huffman encoding.

3



• Snappy [8]: An open source compression library
built by Google. Based on LZ77 [35], Snappy
prioritizes speed over compression ratio and is the
least aggressive of the three algorithms.

Notably, MySQL provides built-in support for zlib and
LZ4, and MongoDB provides built-in support for zlib and
Snappy. Thus, each of the three compression algorithms
has at least two points of comparison across the storage
engines that we attacked. The consistency with which we
achieve high accuracy against a variety of compression
algorithms and implementations suggests that the attack’s
success is not dependent on the precise details of how a
storage engine’s compression works.

Compression and file sizes. Although page compression
reduces the size of an InnoDB page’s contents, InnoDB
writes the compressed page to disk with the original
size of the uncompressed page. Instead of allowing
for variable-sized database pages, InnoDB relies on the
underlying filesystem to save space using sparse files [33]
and hole punching [7]. WiredTiger similarly returns
unused table file space to the filesystem, freeing 4 KB
blocks once they are no longer needed to store data.

The freeing of compressed data has one very important
consequence: although InnoDB and WiredTiger never
explicitly remove uncompressed database pages, changes
in a table file’s compressibility can now lead to pages
being released to the file system. As such, when using
compression, table files can be made to shrink if the
contents of a table become sufficiently compressible.

III. THREAT MODEL

This section elaborates the threat model assumed by
our attack techniques, and the settings where they can
be applied. Broadly, our threat model follows those of
prior works like CRIME and BREACH [16, 27], which
take advantage of opportunities on the web to create
compression oracles and carry out a compression side-
channel attack [22]. Our work follows this same pattern
in the database setting.

There are two fundamental abilities needed for exploit-
ing a compression side channel that our work shares with
CRIME and BREACH.

• The attacker’s ability to insert data close to, and in
the same compression window as, victim data.

• The attacker’s ability to measure the size of the
resulting compressed data.

In the context of databases, this means that a
DBREACH attacker needs the ability to insert and update
data near to victim data and the ability to measure the
size of database tables.

To satisfy the first capability, we require that the
attacker can insert and update database content, either
directly as a regular (unprivileged) user using SQL
queries, or via a frontend web interface or API that
communicates with the database as its storage backend.
We demonstrate attacks using both methods; details are
included in Section VI. Note that it is possible for an
unprivileged database user to have SELECT and UPDATE
permissions on just some columns of a table, allowing
her to insert and update rows in a table despite lacking
permissions to read the contents of other table columns.
DBREACH allows such users to read from the remaining
table columns despite lacking the necessary permissions.

In Appendix D, we also show how to instantiate our
attacks in a setting where the attacker has the additional
ability to roll back file state; we use this altered threat
model to attack MySQL’s InnoDB.

The easiest way to assess the size of the compressed
table, our second attack requirement, is to read the
table file’s on-disk size. This requires read access to
the server machine on which the database is running. If
the database uses table encryption at rest, an adversary
who compromises the encrypted database server will be
able to access a file’s size but not its plaintext contents.

Note that our attacks rely a great deal on the proximity
of victim data to attacker-controlled rows in the table
file, as only data within the same compression window
will compress together. This means that a DBREACH
attacker must either target a database shortly after the
insertion of desired victim data or spray the table with
attacker-controlled data over time to enable later attacks
that target any portion of the table.

IV. PLAINTEXT DETECTION AND EXTRACTION
ATTACKS

This section elaborates our different attack variants and
explains the techniques behind them. We implement three
varieties of plaintext guessing and extraction attacks:

1) a Decision Attack, where we determine whether a
given string resides in the table,

2) a k-of-n Inclusion Attack, where we determine, out
of a list of n strings, which k are most likely to be
in the table, and

3) a Character-by-Character Extraction Attack, where
we extract a whole string from the table without
prior assumptions regarding table contents, other
than a known prefix or suffix present in the table.

Each attack will involve the attacker having a set of
“guesses” of what might be in the table and checking
how likely each guess is to be correct. In practice, this
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list could be a list of email addresses, names, or a list
generated by adding a single character to a known prefix.
To determine how likely a given string is to appear in
a table, we introduce the notion of a compressibility
score. Compressibility scores capture how compressible
a database page becomes after the attacker inserts a guess,
and a lower compressibility score indicates that the table
is more compressible. The scores act as a proxy for the
likelihood that the inserted guess string already appears
in the table, since duplicated guesses will compress better
than other guesses. We will begin by describing each
of our attacks given access to compressibility scores for
guessed strings before going into the details of how to
compute scores in Section V.

Note that the techniques described here and in Sec-
tion V apply to all compression algorithms which we
evaluated; our attack is agnostic as to how precisely the
table data is being compressed.

A. Plaintext Detection Attacks

We begin by describing our decision and k-of-n attacks,
which detect if some plaintext appears in a table. These
attacks build on the “String Presence Detection Attacks”
that Kelsey theorized in [22]; we draw inspiration from
Kelsey’s high-level attack strategies to design and imple-
ment real, functioning attacks on InnoDB and WiredTiger.

Naı̈ve attempts fail. A straightforward approach to the
decision attack would involve picking a fixed threshold
and determining that a string exists in a table if the
compressibility score for that string falls below that
threshold. Likewise, a simple k-of-n attack could rank
all guessed strings by their compressibility scores and
return the k strings with the lowest scores.

These naı̈ve attempts fail to detect table contents.
This is because compressibility scores give relative, not
absolute, information on table compressibility, and other
table contents may affect a guess’s score, regardless of
whether the guessed string appears in the table.

For example, one particularly challenging instance
of this problem appears in what we call the “substring
problem.” This occurs when a string that occurs in the
table is a substring of a guess, e.g., if the attacker is
checking whether “Whitfield Diffie” occurs, and in reality
only “Whitfield” does. In this case, we will observe low
compressibility scores for the string, since the substring
portion will compress entirely.

Our approach. The fact that that compressibility scores
only provide relative information about string compress-
ibility means that we cannot depend on a score in isolation
to assess whether a string appears in a table. We solve

this problem by acquiring two additional reference scores
cyes and cno that inform us of what a compressibility
score should look like for a string that is or is not in the
table, respectively.

We can compute reference scores for inclusion or
exclusion in the table by finding the compressibility
scores of guess strings gyes and gno that we know appear
or do not appear in the table. However, the goal of the
decision attack is to determine whether a string exists
in a table without prior knowledge of the table contents.
Nonetheless, we can take advantage of the fact that a
sufficiently long random string only appears in a table
with negligible probability; thus, we select a uniformly
random string for gno.

While a random string suffices for gno, determining
gyes still poses a problem. Our solution takes advantage of
the nature of our compressibility scoring algorithm (see
Section V). In the process of computing compressibility
scores, we insert “filler” strings into the table to align
guesses with database page boundaries. Because we have
inserted the filler strings ourselves, we know that they
appear in the table. Thus we can bootstrap our guess gyes
on top of the compressibility score calculation itself.

We require that gyes has the same length as the real
guess string(s), since a longer string match will result in
greater compression and therefore lower compressibility
scores. Thus, while running attacks on strings of varying
lengths, we calculate a separate cyes for each length.

With gyes and gno determined, an attacker can compute
their compressibility scores to get cyes and cno as well as
the compressibility scores c1, ..., cn for the actual guesses
g1, ..., gn whose presence or absence in the table she
wishes to discern. For each string, the attacker decides
whether or not the string is present based on its score’s
proximity to cyes relative to cno. This is achieved by
computing the decision value

dg =
cno − cg
cno − cyes

,

which gives dg = 1 if cg = cyes and dg = 0 if cg = cno.
For a k-of-n attack, we sort guesses by their decision

values and pick the k highest values. This allows us to
compare variable length strings while deciding if a guess
is present in the table. For the decision attack, we don’t
require strings to precisely match cyes due to the presence
of noise in the side channel; rather, we consider strings
with decision values above some empirically determined
threshold tyes to be in the table.

Choosing tyes. Noise in the compression side channel
can make two exact string matches have slightly different
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compressibility scores. Thus, a successful decision attack
requires properly setting the threshold parameter tyes,
which amounts to a tradeoff between minimizing the
rates of false positives and false negatives.

The optimal value for the decision threshold tyes may
vary depending on the precise setting of the attack. As
such, the best way to determine the ideal threshold value
is to do so empirically based on the set of guesses
an attacker wishes to check. Using this set of guesses,
an attacker can repeatedly simulate the target database
offline to generate a set of training examples consisting
of compressibility scores and labels. An attacker can
insert some random subset of their guesses into the
offline testing table and then run the attack on all guesses,
gaining data for what compressibility scores look like in
the positive and negative cases. To generate a robust set
of training examples, an attacker can vary the number
of records on the page during data collection and can
augment their set of guesses with additional similarly
structured strings. Using the resulting training data, an
attacker can simply search over many possible threshold
values to find the optimal one.

Using this select methodology led to high levels of
accuracy while executing the decision attack, as shown in
Section VI-B. That this method is so successful suggests
that the ideal threshold value depends mainly on the
general structure of the target plaintext, rather than its
precise contents. This threshold selection strategy does
require the attacker to have some idea of the general
structure of the data in the target plaintext; that said, this
practical requirement was already necessary in order to
effectively make use of any of our plaintext detection
attacks.

B. Character by Character Plaintext Extraction

The character-by-character attack extracts arbitrary
plaintext from an encrypted table one character at a
time. This extractive attack is most similar to the CRIME
and BREACH attacks instantiated against TLS [16, 27];
while details differ, our recursive, prefix-based approach
borrows from the strategies of these prior works.

Extracting data one character at a time introduces new
challenges not present in detection attacks. For example,
choosing a random gno no longer reliably works when the
string is too short. Moreover, many characters will appear
at different places in a table, meaning that determining
whether or not a single character appears in a table does
not really help to determine table contents.

Fortunately, the difficulties of character-by-character
extraction can be turned into advantages. Since there
are only a limited number of potential characters in a

victim table, we know that one of these characters always
appears at each position in the table. Thus, if only we had
a way to fix the position in a table whose compressibility
we are testing, we can do away with cyes and cno, and
determine that the guessed character with the lowest
compressibility score is the actual character in the table.

Absent a mechanism for fixing the position against
which to test compressibility, many individual characters
are likely to have the same compressibility score because
they will appear at multiple places in each database page.
Observe, however, that once a character by character
attack is partially completed and several consecutive
characters have been extracted from a table, this problem
goes away. Instead of computing the compressibility score
of one character at a time, the attacker computes the
compressibility of the whole extracted string with one
additional guessed character added to it.

In order to commence character extraction, we can
bootstrap this process by taking advantage of additional
attack scenario context. For example, suppose we wish
to extract email addresses or US social security numbers
(SSNs) from a table. Many SSNs begin with deterministi-
cally chosen digits, with most of the entropy stored in the
latter half of the number. Likewise, many email addresses
end in “@gmail.com” or another well-known domain.
We can use such contextual knowledge to provide an
initial substring to which we can add as the extraction
attack progresses. The attack then proceeds as follows.

1) Begin with some known prefix (or suffix) p and
alphabet of possible characters Σ.

2) Generate a candidate string list L of size n = |Σ|
by appending each element of Σ to p.

3) Compute a compressibility score for each element of
L, and pick the one with the lowest compressibility
score as the most likely candidate out of the n
options. Call this most likely string p′. Note that
p′ = p∥c, where c is the most likely next character.

4) Set p = p′, and return to step 2.
To determine when to end the extraction process

described above, an attacker can either rely on a priori
knowledge regarding the plaintext length, or can terminate
the process when no clear winner emerges from step 3,
i.e., every option receives a very similar compressibility
score.

V. COMPUTING COMPRESSIBILITY SCORES

We now describe our algorithm for computing com-
pressibility scores. These scores enable the attack algo-
rithms described in Section IV by providing information
about how different guesses compress with extant table
contents.

6



A. Finding a Page Boundary

To assess the likelihood that a particular string is
present in the target table, we need a way of quantifying
how compressible the table page is when the attacker
has inserted that string as a guess. Recall, however,
that the extent of table compression in InnoDB and
WiredTiger does not directly reflect the file size on
disk (see Section II). Instead, table sizes increase in
discrete chunks, only when all available space has been
exhausted. Similarly, table sizes decrease only when
enough space has been cleared to free an entire database
page. This means that compressibility scores cannot be
computed by simply observing file sizes, as was done with
network messages in previous compression side-channel
attacks [16, 27]. Instead, we need a way to learn how
compressible strings are despite the limited granularity
of table size measurements. This means we must use our
ability to manipulate a table to gain as much information
as possible from discrete jumps in table size.

As a first step, we need to make sure that our
compressibility scoring efforts start from a common
baseline where inserting a more compressible string
will cause a table to be observably smaller in size than
inserting a less compressible string. To do this, we insert
“filler rows” into the table until the compressed table is
right on the brink of growing in size. In each of these
filler rows, VARCHAR and other text fields should be
filled with a character set that is (wherever possible)
disjoint from the set of characters actually in the table;
this is to avoid introducing noise into the side channel
due to compression between filler rows and other table
contents. Appendix B describes the structure of filler
rows in the implementation of our attacks.

While inserting filler rows, we have a choice: we can
either insert sufficient filler data such that the table grows
in size (and then immediately stop inserting rows), or we
can insert filler content such that the table is about to grow
in size, by causing the table to grow and then shrinking
it again by reducing the amount of incompressible filler.
In our implementation, we take the former approach with
InnoDB and the latter approach with WiredTiger. In either
case, the end of the table is now very close to the “page
boundary” at which point the table size changes; our
compressibility scores approximate the signed distance
from the end of the table to this page boundary.

B. Assessing Compressibility

Having a table at the brink of changing size allows us
to compare many guesses against each other by repeatedly
inserting a guess and estimating the distance from the end
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Guess s

Compressible Bytes

Fig. 1: Table state throughout the compressibility scoring
algorithm. The table begins with target plaintext on the most
recently allocated, and partly unused, page. First, the attacker
inserts filler rows to overflow onto the next page. Next, the
attacker inserts the string s into the first filler row and adds
compressible bytes one at a time until the new page is hole-
punched, shrinking the table back to its earlier size.

of the table file to the point at which the table changes size.
The process of filling a table to the boundary between
two page sizes only needs to run once and can be used
for many compressibility score evaluations.

Compressibility scores are integers, with smaller scores
(including more negative scores) indicating more com-
pressible strings. After the initial “filler row” setup stage,
our approach to computing compressibility of a string s
proceeds as follows.

1) We update the first “filler row” to contain the string
s without changing the total row size. That is, we
overwrite the first |s| bytes of the filler row with s.
Note that if there are multiple text columns per
row, s does not need to be in the “correct” column,
i.e., the actual column where it occurs in the table,
because all columns are compressed together.

2) We now seek to measure the distance from the
current end of the table file to the point at which the
file changes in size. If we added filler bytes until the
table grew (InnoDB), then we start from the second
filler row and, going byte by byte, overwrite the
incompressible filler data with compressible bytes.
In practice, this just means replacing each random
filler byte to be the same character.
If we added filler bytes until the table was about
to grow (WiredTiger), we start from the second
filler row and, going byte by byte, overwrite the
compressible bytes with incompressible filler data.
In practice, this just means replacing each identical
compressible character with random filler data.

3) We stop when the on-disk table size changes due
to shifts in compressibility. Let the compressibility
score cs be the number of compressible bytes that
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were added to change the table size. If compressible
bytes were replaced with incompressible bytes in
order to grow the table, then cs will be negative.

The compressibility score cs now serves as a proxy
measurement of the signed distance from the end of the
table (after inserting s) to the point at which the table
changes in size. This measurement allows us to assess
the overall compressibility of the table with each guess
inserted.

The intuition behind this compressibility algorithm is
that if the string s is present in the table, then some
compression will take place after s is inserted in step
1. Thus, the table will be smaller with s inserted as
compared to some non-present string, so strings that
occur in the table will have lower compressibility scores.

After each compressibility score computation, we
update the table so that all filler rows once again contain
the original incompressible filler data, effectively resetting
the table state so it can be used to compute another
compressibility score. A visual representation of this
compressibility scoring algorithm can be seen in Figure 1.

C. Obstacles to Measuring Compressibility Precisely

In practice, noise in the compression side channel can
lead to compressibility scores that fail to precisely capture
the true compressibility of different guesses with the
target plaintext. Sources of noise include the following.

• Unexpected compression due to shifts in the Huff-
man encoding of the table,

• Unexpected compression with other parts of the
table file,

• Compression within the string itself, e.g. the string
“abcabcabc” would appear more compressible than
a string like “abcdefghi,” even if neither is in the
table, and

• Unexpected insertions onto different pages due to a
fragmented table representation on disk, e.g., in a
table that has had many deletions.

Noise in the side channel will occasionally lead to
inaccurate compressibility scores and false positive results
in our attacks. In practice, these false positives are
relatively rare for large enough strings, in both storage
engines. That said, in Section VI, we observe that the
compression signal is less noisy and more reliable while
attacking WiredTiger as compared to InnoDB. This is
likely because WiredTiger’s simpler NoSQL storage
format involves storing less mutable metadata that can
interfere with our compression.

If the strings being evaluated are short, or differ by only
a few characters, noise can make our attack noticeably

less accurate. This concern is especially prescient for the
zlib compression algorithm, which is the only one that
uses Huffman encoding [19].

Some of these issues, especially those dealing with
Huffman coding, have been previously mentioned by the
authors of BREACH [16], who propose mechanisms for
de-noising compression side channels. We find that our
compressibility scoring scheme, when augmented with the
optimizations in Section V-D, gives good results despite
the remaining potential for noise in the side channel.

D. Amplifying Compressibility with Repetition

Although a naı̈vely computed compressibility score
can give inaccurate results due to a noisy side channel,
truly more compressible strings do score better on
average. As such, we can amplify the accuracy of
our compressibility scoring through repetitions of the
algorithm. In Section VI, we report on the relationship
between the number of repetitions used and accuracy of
character by character extraction. Surprisingly, repetition
suffices for high-accuracy compressibility measurement
even without using other noise-mitigation optimizations
present in prior work.

After measuring the number of bytes bsi we need
to change to compress the table for all guesses si, i ∈
{1, ..., n}, we repeat the compressibility scoring from
scratch, starting with new random incompressible filler
data, and measure compressibility again. After completing
r repetitions we have counts b

(1)
si , b

(2)
si , ..., b

(r)
si for i ∈

{1, ..., n}. The way we use these values to compute
amplified compressibility scores varies somewhat based
on the underlying compression algorithm.

Amplified compressibility for zlib. One way to compute
an amplified compressibility score would be to sum scores
for each si, i.e., to compute

csi = Σr
j=1b

(j)
si .

Recall, however, that compressibility scores only give
information about the relative compressibility of strings,
not absolute information. Thus the compressibility of
a given string may vary widely between repetitions,
and compressibility scores in different repetitions of the
scoring algorithm cannot be compared directly. We avoid
this problem by normalizing scores in each round. We
do this by calculating the difference between the number
of bytes needed to compress a guess and the minimum
number of bytes needed to compress a guess in that
repetition. That is, we set

csi = Σr
j=1

(
b(j)si −Minnℓ=1(b

(j)
sℓ

)
)
.

8



Target Data Random English Emails

Snappy (IDB) .50 (.93) .62 (.74) .85 (.80)
zlib (IDB) .45 (.92) .69 (.79) .81 (.90)
LZ4 (IDB) .47 (.99) .55 (.83) .78 (.91)
Snappy (WT) .35 (1.00) .39 (.90) .49 (.91)
zlib (WT) .46 (.93) .35 (.83) .52 (.92)

TABLE I: Best accuracy threshold (and average accu-
racy achieved at that threshold) for each compression
algorithm, storage engine, and target data setting. IDB
denotes InnoDB, whereas WT denotes WiredTiger.

Fig. 2: Frontend for example web interface through which we
instantiated our k-of-n attack. Web interface was backed by a
MariaDB/InnoDB database instance in which users’ sensitive
data was compressed and encrypted.

This method for calculating csi proves effective for
amplifying the signal in zlib compression, allowing us
to overcome the noise added by Huffman encoding. We
detail additional heuristic techniques for calculating more
precise compressibility scores for LZ4 and Snappy in
Appendix C.

We find that repetition is indispensable for our character
by character attack, whereas our other attacks do fairly
well even without repetition. This is because selecting
one incorrect character renders the prefix incorrect and
dooms the rest of the attack. As such, we expect to
witness an exponential decay in the likelihood of fully
extracting a string as the target string’s length increases;
if we have a probability 0 ≤ q ≤ 1 of correctly guessing
the next character of a string, then we expect to have
probability qn of extracting an entire string of length n.
We empirically witness this decay relationship between
the length of the target string and the likelihood of success
in Section VI-C.

VI. EVALUATION

Attack environment. We ran our experiments on a
Google Cloud (GCP) e2-medium instance, with an Intel®
Broadwell 2.20GHz CPU with 2 cores and 4 GB RAM.
The instance uses SSD storage. We installed MariaDB

10.3.29 and MongoDB Enterprise Server 6.0.0 on top of
Ubuntu 20.10.

To demonstrate that our attack can be instantiated
remotely through a web interface, as discussed in Sec-
tion III, we attacked our own database server using an
InnoDB-based REST API that transmits form data from
the web frontend seen in Figure 2. Further details on this
proof-of-concept attack are included in Appendix E.

We also instantiated our attacks using Python connec-
tors for MongoDB and MariaDB, running locally on the
database server and using only the unprivileged database
access allowed by our threat model. To simplify and
quicken evaluation, the experiments described here were
conducted locally in this manner, thus avoiding network
overhead.

In each of these experiments, we targeted the final,
partially empty database page and configured our database
to flush changes to disk after every insert or update. A
database with lower flushing frequency would slow down
our attacks by a factor proportional to the flushing delay
but would not affect the accuracy of our attacks. In this
case, an attacker would simply have to wait between
operations for the changes to be reflected on disk.

Evaluation datasets. In most of our experiments, we
assess the accuracy of the attack variants on three
different types of target plaintext: randomly generated
text, English words, and email addresses. Each dataset
consists of a simple (id, value) schema, where
id is an integer and value is a string. The random
plaintext was generated by selecting random lowercase
characters to form 2,000 strings between 10 and 20
characters in length. English words were sampled from a
list of the top 10,000 English words [12], discarding
words less than 9 characters in length (resulting in
2,241 words). Lastly, 2,000 synthetic email addresses
were randomly generated using a random email address
generator [26] which combines alphanumeric names with
an assortment of email provider domains. Since many
of our email addresses come from the same provider,
repeated substrings across different entries are most
common in the email dataset; on the other hand, repeated
substrings of substantial length are very rare in the
random dataset.

A. Decision Attack

We have previously mentioned that the Decision
Attack relies on a threshold value tyes while deciding
whether a given guess is in the table. To assess the
accuracy of the decision attack, we first use the procedure
described in Section IV-A to determine the optimal
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Fig. 3: Accuracy of the decision attack on each dataset. Our attack results in a high probability of determining whether a string
is in the table across all three datasets, with a higher accuracy when the strings are random and the compression process is
therefore less noisy. The “chance” line indicates the expected results of randomly guessing, which achieves an accuracy of 0.5.
Sudden accuracy drops for large numbers of records are due to guesses spilling over onto a second page.

threshold tyes for our attacks. The resulting best threshold
for each evaluation set and storage backend appears
in Table I. As expected, we found that the optimal
threshold value varied depending on whether we were
extracting random text, English words, or email addresses.
Specifically, extracting text in which repeated substrings
occur more frequently generally necessitates a higher
threshold value to avoid false positives. Observe that, for
each compression algorithm, the threshold values for each
dataset are roughly ordered based on the likelihood of
seeing repeated substrings in that text, with the random
dataset obtaining the lowest thresholds and the email
address dataset obtaining the highest thresholds. We also
note that InnoDB typically has higher threshold values
than WiredTiger for the same compression algorithms.
This is due to a higher level of overall noise in the
InnoDB compression side channel, leading to incorrect
guesses occasionally having higher scores. More details
on threshold selection are presented in Appendix A.

Next, we assess the accuracy and efficiency of the
decision attack using the calculated threshold value. For
these tests, we evaluate the decision attack on a test set
of equal numbers of strings that do and do not appear in
a table, so we would expect random guessing to achieve
an accuracy of 0.5.

As seen in Figure 3, we observe consistently high
extraction accuracies on each type of target text and

for each compression algorithm, even as the number of
records on the database page increases. While extracting
random text, the easiest of the three evaluation datasets
due to the lack of overlap between guesses, we achieve
accuracies of over 90% for all three InnoDB compression
algorithms up until there are 180 records on the database
page. In the less-noisy WiredTiger environment we
achieve even higher accuracy, including near-perfect
99.8% precision on the Snappy algorithm. This pattern of
retaining high accuracy even on nearly-full pages, which
we see on the other datasets as well, suggests that the
decision attack algorithm is resilient even in noisy settings.
The sudden drop-off in accuracy that occurs for the zlib
algorithm on random strings and email addresses is due
to the page becoming full; this is likely caused by the
incompressibility of random text and the longer length of
records in the email address dataset. Once the page fills,
the guess and/or filler rows are inserted onto a different
database page than the target plaintext in the table. Since
compression only occurs within a database page and
not between different pages, observing the compression
signal in such a setting is not possible and is out of scope
for our attack.

Regardless of the compression algorithm or the type
of text being extracted, we found that the timing of the
decision attack remained consistent. That said, the timing
noticeably differed on WiredTiger and InnoDB. While
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attacking InnoDB, setting up the attack, i.e., inserting
filler rows until the table grows, took an average of
0.59 seconds with a standard deviation of 0.59 seconds.
Running the attack took and an additional 1.6 seconds per
guess (with standard deviation 1.3 seconds), including the
time needed to compute reference compressibility scores.
We observed slower times for WiredTiger: guesses took
an average of 5.03 seconds, with standard deviation of
3.21 seconds. This slower guess time is likely due to
the fact that WiredTiger is less well-suited for such a
disk-flush-intensive workflow. Setup time took noticeably
longer for WiredTiger, lasting an average of 184.71
seconds with a standard deviation of 125.93 seconds.
The lack of substantial metadata chunks associated with
subsequent row insertions made it take longer to find
the page boundary in WiredTiger, leading to the longer
setup time. The positive tradeoff is that the relative lack
of per-row metadata allowed us to be more precise in
finding the page boundary, potentially explaining some
of WiredTiger’s higher accuracy

The majority of the time spent on each guess is spent
searching for the cutoff point of compressible bytes at
which point the table changes in size. Since InnoDB or
WiredTiger must re-compress and encrypt the entire page
and flush to disk after each update, we are limited by
the speed of the compression and encryption algorithms
and, most consequentially, disk write speeds.

B. k-of-n Attack

To assess our k-of-n attack, we set k equal to the
total number of records on the page, and observed the
precision of the attack – the fraction of the k chosen
strings that actually appear in the table. We set n = 500
and chose the 500 guesses at random from the strings in
each dataset, of which k would be inserted into the victim
table. The results from this experiment on each dataset
and for both storage backends are shown in Figure 4.

We observed extremely high precision on random string
extraction on both InnoDB and WiredTiger, with each
compression algorithm achieving values over 90% for
most values of k while attacking InnoDB and nearly
perfect accuracy while attacking WiredTiger. Across
the board, we achieve slightly higher precision while
attacking WiredTiger due to its less noisy side channel,
as discussed in Section V-C. The precision of the attack
regressed slightly on the English word and email datasets
due to the increased likelihood of compression between
substrings of incorrect guesses and substrings in the
target plaintext. Nevertheless, the attack outperforms
chance in every case on both WiredTiger and InnoDB.
The decrease in precision on the two structural datasets

suggests that partial substring compression is the most
consequential source of noise for this attack, whereas
the similar precision achieved while attacking zlib and
other (non-Huffman encoded) compression algorithms
suggests that the noise from Huffman encoding is not
consequential in this context.

As expected, running the k-of-n attack with larger
values of n and the same value of k slightly increases
the likelihood of false positives, since we are testing
more incorrect guesses. This phenomenon can be seen
in Figure 5, which shows the effect of varying n on
attack precision while extracting email addresses from
an InnoDB table that was compressed using zlib; we
observed similar results for each compression algorithm
and storage backend.

C. Character-by-Character Extraction

Since each guess in the character-by-character attack
only differs from other guesses by a single byte, the
sources of noise mentioned in Section V-C can have an
out-sized effect on the outcome of the attack. As such,
the amplification techniques described in Section V-D
become very important in ensuring the accuracy of our
character extractor. We now present evaluation results for
the extraction attack against InnoDB using zlib, its default
compression scheme. We present evaluation results for
LZ4 and Snappy in Appendix C, after describing the
compressibility score amplification techniques used for
those compression algorithms. Overall, our character by
character results for zlib are stronger than for LZ4 or
Snappy.

To determine the optimal number of amplification
rounds to run, we first measured the accuracy of the
extractor at picking the correct next character given
different amounts of repetition and varying length known
prefixes. Each prefix was randomly chosen from the
set of lowercase characters, as was the unknown next
character which we attempted to guess. The results of
this experiment, showing the accuracy of next-character
prediction over more than 40 trials, are shown in Figure 6.

We observe prefix length has little effect on the
accuracy of our character extractor, as long as the prefix
is at least three bytes. Repeated strings of less than
four bytes in length are too inconsistently compressed,
preventing us from achieving high accuracies; when the
known prefix is one or two bytes, we are only able to
achieve a maximum accuracy of around 80% even with 40
amplifications. With a sufficiently large prefix of 3 bytes
or above, however, we are able to achieve accuracies
between 95% and 100% after 30 amplification rounds.
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k-of-n Attack Precision
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Fig. 4: Precision (fraction of correct guesses) of the k-of-n attack with n = 500 and k set to the number of records on the
page. The “chance” line indicates the expected results of randomly guessing k of the n strings. Sudden precision drops for large
numbers of records are due to guesses spilling over onto a second page.
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precision of the k-of-n attack, where k
is the number of records on the page.
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racy. Amplification leads to high accu-
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Fig. 7: Average fraction of bytes ex-
tracted by the character by character
attack prior to making the first mistake,
for different length target strings. Target
string length does not include the 14-
byte known prefix. Averaged over 20
trials per string length.

These strong next-character extraction results lead to
high accuracy in the character by character attack. To
assess the accuracy of the attack, we used it to extract
different length strings given a known (randomly chosen)
14-character prefix and using 30 amplification rounds.
The results from this experiment can be seen in Figure 7.
We witnessed near perfect accuracy for short strings of
length 10 or below, 92% recovery for strings of length
17, and an average of 72% recovery if the string is of
length 20. This quick falloff in accuracy as the target
string length increases confirms our intuition regarding
the exponential increase in difficulty as plaintext length

increases.
The timing of the character by character attack is

affected greatly by the number of amplification rounds we
must perform. While using InnoDB’s zlib, we observed
an average time per amplification round of 20.3 seconds,
with a standard deviation of 10.7 seconds. Since a single
round takes about 20 seconds, running 30 amplifications,
as we did for zlib in Figure 7, takes approximately 600
seconds to extract a single character. In practice, an
attacker could balance their need for accuracy with their
need for speed by increasing or decreasing the number
of amplification rounds.
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We also instantiated a proof-of-concept character
extractor attack against WiredTiger, but we focused our
evaluation efforts on InnoDB, as InnoDB appeared to 1)
be more noisy and therefore more challenging to attack
in our earlier experiments, and 2) take less time for
an amplification round than WiredTiger, enabling more
extensive experiments.

VII. MITIGATION

The first and most effective means of defense against
DBREACH is to turn off compression entirely. This
eliminates the compression side channel from which the
attack arises, but may not be a feasible solution for storage
space and cost reasons.

Short of turning off compression entirely, the threat
surface can also be significantly reduced by not compress-
ing together rows that may contain data from multiple
users. A first step in this direction, usable today with
no changes to existing database implementations, is
to use MariaDB’s storage-engine independent column
compression, which compresses the contents of selected
columns separately for each row. This reduces the chance
that data from different users is compressed together,
but it also dramatically reduces the effectiveness of
compression.

Database implementations could consider adding sup-
port for full row-by-row compression to maximize com-
pression within one user’s entry in a table but disallow
compression between different users’ data. A more
significant change would be to allow users to categorize
data into separate compression buckets where only data in
the same compression bucket can be compressed together.
This would give users more granular control of what
data can be compressed together, but it would involve
larger changes in storage engine design and significantly
complicate the user experience.

VIII. RELATED WORK

The earliest work on compression side channels is
by Kelsey [22], who introduced several methods for
detecting the presence of strings and extracting plaintext
information when compression is paired with encryp-
tion. Practical compression side-channel attacks against
TLS and HTTPS were introduced in CRIME [27] and
BREACH [16], and a number of subsequent improve-
ments have either improved the precision or reduced the
burden of launching such an attack [10, 17, 21, 23, 31].
Earlier works had taken advantage of size or timing infor-
mation to compromise encrypted communications over
a network, but they did not directly use a compression
side channel [29, 32].

Concurrent with our work, Schwarzl et al. [28] have
introduced timing side-channel attacks on memory com-
pression, and among the example applications of their
attack, they demonstrate an attack against one mode
of compression in Postgres databases. However, their
threat model differs from ours in that their attacks
take advantage of decompression timing and require a
table’s contents to be read in order for the attack to
work. Moreover, their attack on Postgres operates in a
stronger attacker model where the attacker can modify
one part of a single cell in a table but does not have
read access to other parts of the same cell. While the
attacks of Schwarzl et al. have implications in many other
areas not covered by DBREACH (e.g., PHP applications
using Memcached, Linux memory compression), their
applications to databases are more limited in scope.
Somewhat related, memory deduplication can also expose
data via timing side channels that are observable to
local and remote attackers. Compressed caches can also
expose secret data, as shown by Tsai et al. [30] who
develop techniques specific to attacking caches for the
VSC architecture.

Several prior works have introduced defenses against
compression side-channel attacks, particularly in the
web context [9, 20, 25]. Broadly speaking, these de-
fenses attempt to achieve the best possible compression
performance without compromising security. CTX [20]
proposes a “context-hiding” approach to ensure that
sensitive data cannot be compressed with other data.
Debreach [25] (not to be confused with our attack,
DBREACH) uses static analysis techniques to detect
and mitigate potential compression side channels.

Our primary contribution to the body of work exploring
compression side channels is the identification and
development of practical, performant, and accurate attacks
against multiple commonly used database systems. As
with other examples of exploiting compression oracles,
this required carefully developing generalizable tech-
niques that are specific to the databases setting where
a naı̈ve application of the general underlying principle
would not work.

While no prior work has shown compression side-
channel attacks against InnoDB, WiredTiger, or other
database storage engines, others have shown ways to
exploit other aspects of the InnoDB design, such as to
extract plaintext or for forensic purposes, e.g., [13, 14].

IX. CONCLUSIONS

We have introduced DBREACH attacks – new com-
pression side-channel attacks capable of extracting the
contents of encrypted database tables. DBREACH attacks
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detect and extract plaintext in tables that use compression
and encryption, and they arise in various situations
where an adversary posesses limited access to write
to and update a table and observe table metadata. We
demonstrated DBREACH attacks on the InnoDB and
WiredTiger storage engines using a range of compression
algorithms and storing several types of plaintext. Lastly,
we discussed potential mitigations to prevent databases
from falling victim to DBREACH attacks.
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Fig. 8: Threshold selection data for each evaluation dataset while attacking InnoDB. Displays accuracy achieved on each training
dataset under different threshold values. Note that the curves skew towards 1 for datasets in which repeated substrings are more
common, since higher threshold values are needed to avoid false positives.

APPENDIX A
FINDING THE OPTIMAL tyes

We chose our optimal thresholds for the decision attack
by trying every increment of 0.01 between -0.5 and 1.5
to generate the graphs of accuracy vs. threshold values
for InnoDB seen in Figure 8. We generated the training
dataset for Figure 8 using the methodology described in
Section IV-A, and we excluded from our calculation any
training data points in which the table page was too full
to pull off the attack. (It is easy to detect such instances
during data collection by monitoring the table file’s size.)
The maximum point in each graph is the threshold we
chose to use in our evaluation; these maximal values can
be seen in Table I. Trying decision thresholds below 0
and above 1 accounts for the possibility that a string may
be more compressible than a string we know to be in
the table or less compressible than a string we know to
be absent from the table. As expected, there is a steep
drop in projected accuracy of the decision attack if the
threshold is below 0 or above 1.

We utilized the same process to calculate the optimal
threshold values for WiredTiger as well, which generated
similar-shaped graphs to those in Figure 8. For brevity,
we only include the InnoDB graphs in the appendix.

APPENDIX B
FILLER ROW FORMAT

This section specifies the structure of filler rows and
the compressible bytes used to replace incompressible
filler contents. A naı̈ve implementation of would have
random strings play the role of incompressible strings
and then replace the contents of the random strings one
character at a time with the same character, ideally one
which does not naturally appear in the table to reduce
the chance that the compressible bytes do not compress
with other text already in the table. Our implementation
uses “∗”.
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Fig. 9: Single character extraction results for Snappy and LZ4.

This approach works but is suboptimal because it
results in a noisy measurement of compressibility. Real
compression functions do not always compress a small
string formed by repeating the same character many
times. Luckily, a longer string consisting of all the same
character will be much more likely to absorb an extra
identical character without growing its compressed size.
The details vary between compression algorithms, but
we observed this same high-level behavior across all the
compression algorithms tested.

Following these observations, we design our filler
rows such that the replacement of one random character
with a compressible character almost always results in
the compressible character properly compressing with
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the string that precedes it. After the first filler row,
which has all incompressible contents (to be replaced
by a guess string), our remaining filler rows contain
a “bootstrapper” compressor string, which takes the
form of many simultaneously repeated characters. For
MariaDB, we use the “bootstrapper” string ∗100, followed
by incompressible random data to fill the rest of the row.
This way, we can replace an incompressible byte with an
additional asterisk and the string will very likely shrink
in size as the compressed bootstrapper string absorbs
another identical character. For WiredTiger, since row
size is unlimited, we set the bootstrapper string to be
even larger (∗5000 initially), and gradually shrink its size
until the entire page is filled.

APPENDIX C
CHARACTER BY CHARACTER ATTACK FOR SNAPPY

AND LZ4

In this appendix, we provide further strategies and
evaluation for using the character-by-character attack
against InnoDB using Snappy and LZ4. Primary details
related to how the attack works and evaluation against zlib
are found in the main body of the paper, in Sections VI-C
and IV-B.

When using Snappy or LZ4 compression in a character
by character attack, we modify our compressibility
measuring scheme based on empirical observations of
compression behavior. As expected, we find that the
correct next character guess s∗ in a character by character
attack always has values b

(j)
s∗ that differ significantly

from incorrect guesses, whose b-values tend to cluster
together. However, due to idiosyncrasies of the underlying
compression algorithms, the direction of the difference in
scoring sometimes means that the value b

(j)
s∗ is sometimes

considerably higher than other scores, rather than lower,
as we would expect.

We correct for this behavior by switching the calcula-
tion of csi to use an outlier-based system, in which only
guesses s

Argmaxℓ(b
(j)
sℓ

)
and s

Argminℓ(b
(j)
sℓ

)
receive contribu-

tions to their amplified compressibility score from any
round j.

More precisely, we set

csi = −
r∑

j=1

R(b(j)si )

where R computes the points awarded for a given round

as follows.

R(b(j)si ) =


Minℓ̸=i(b

(j)
sℓ )− b

(j)
si if i = Argminℓ(b

(j)
sℓ )

b
(j)
si −Maxℓ ̸=i(b

(j)
sℓ ) if i = Argmaxℓ(b

(j)
sℓ )

0 otherwise.

That is, the guesses with the largest or smallest b(j)si

are awarded the difference between their own score
and the guess with the second largest or smallest b(j)si ,
respectively. To remain consistent with our usual approach
for calculating compressibility, we negate all the amplified
compressibility scores to ensure that the winning guess
still has the smallest score, even though this does result
in negative compressibility scores.

Character by character attack evaluation. Prefix length
in the character by character attack seems to play a much
larger role in Snappy and LZ4 than it did in zlib (see
Section VI), with the effects particularly noticeable in
the case of Snappy. Because of quirks in the Snappy
algorithm, and because Snappy does not compress very
aggressively, different prefix lengths converge to very
different accuracy values as the number of amplification
rounds increases. For example, we achieve 100% accuracy
prefixes of length 10, but a maximum of about 90%
on prefixes of length 5 and 15. In both the LZ4 and
Snappy case, we are significantly more accurate than in
zlib for very low numbers of amplifications, likely due
to the absence of Huffman encoding. However, since
the algorithms sometimes compress less aggressively
depending on the length of the string, amplification does
not achieve the same level of universal success as in
the zlib case. Results of our single character extraction
experiments for Snappy and LZ4 appear in Figure 9.
This higher likelihood of failure on certain prefix lengths
prevents us from achieving very high accuracy with
Snappy and LZ4 while extracting characters one at a
time.

Figure 10 shows the fraction of bytes extracted in a
character by character attack prior to making the first
mistake. Since each step of the character by character
attack increases the length of the prefix the attacker uses
to guess the next character, the attack quickly reaches a
point where it must use a prefix of a length on which the
next-character extractor performs poorly, resulting in a
less effective character by character attack than we saw
with zlib.
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Fig. 10: Average fraction of bytes extracted prior to making the
first mistake our using character by character attack on InnoDB,
for varying lengths of target strings. Averaged over 10 trials
per target string length. Target string does not include known
14-byte prefix.

0 50 100 150 200
0

0.25
0.5

0.75
1

Records on Page

Pr
ec

is
io

n

k-of-n Attack on MySQL
Random Strings

zlib LZ4 chance

Fig. 11: Precision (fraction of correct guesses) of the k-of-n
attack with n = 500 and k set to the number of records on the
page, while using MySQL with encryption turned off. Snappy
is absent because MySQL page compression only supports zlib
and LZ4.

APPENDIX D
ROLLBACK-BASED ATTACK AGAINST

INNODB+MYSQL

We explored the extension of our attacks from Mari-
aDB to MySQL, finding that our general method can
apply with some caveats. Our attacks succeed with results
comparable to MariaDB when compression is turned on
without encryption, allowing us to extract table contents
without directly reading them from storage. For example,
Figure 11 evaluates the k-of-n attack in compression-only
mode, demonstrating the potential for a compression side
channel in MySQL.

However, when encryption is turned on, MySQL
behaves differently from MariaDB in that it does not
shrink files on disk as tables become more compressible
due to updates. This prevents our attacks from translating
as-is to MySQL. We overcome this obstacle by using a
stronger threat model where the attacker can, instead of
updating rows in the table, roll back the table files on
the filesystem. While this threat model is stronger than

the one described in Section III, it is worth noting that
even an attacker with filesystem write capabilities on the
database server, which would provide roll back power,
would still not be able to read an encrypted database
without the proper database permissions.

With this additional power, our attack simulates an
update to guess a string by inserting rows, rolling back
state to remove the inserted rows, and inserting rows
again. The ability to roll back the table state allows us
to calculate compressibility scores for multiple guesses,
as we can roll back the state instead of re-shrinking the
table via updates between each guess. By observing the
changes in table size as different guesses are inserted,
we can once again execute our attacks on InnoDB in
MySQL. We validated this approach with a small-scale
experiment where we detect which of a list of names has
been inserted into a table.

APPENDIX E
DBREACH ATTACK USING A WEB FRONTEND

To demonstrate the feasbility of DBREACH when the
attacker has access to a frontend web-service rather that
directly to the database API, we implemented an API
point and a web frontend that uses it store and access
data in the database, and instantiated the DBREACH
attacks through it. Our web frontend (see Figure 2) takes
names as inputs, and stores them in a database. This
illustrates a sensitive list of names, such as people signed
on a political petition, or people who filled a certain
medical form. The frontend invokes a REST API to store
the names in an InnoDB database table. We simulate
an attacker that has access to the underlying size of the
table by adding an API call that provides it. In reality, an
attacker could obtain it by monitoring the table size after
gaining filesystem read access on the server. The attacker
calls the API to perform many insertions of guesses,
along with the necessary filler rows; by doing so, we
were able to successfully extract a secretly inserted name.

Note that our API does not sanitize the strings.
However, we note that sanitization would not prevent
the attack, since our attack does not have to use any
unusual characters. At best, it would have a small impact
on accuracy by preventing the attacker from using rare
characters for filler rows.
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